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PURPOSE. Laplace’s Law, with its compactness and simplicity, has long been employed in
ophthalmology for describing the mechanics of the corneoscleral shell. We questioned the
appropriateness of Laplace’s Law for computing wall stress in the eye considering the
advances in knowledge of ocular biomechanics.

METHODS. In this manuscript we recapitulate the formulation of Laplace’s Law, as well as
common interpretations and uses in ophthalmology. Using numerical modeling, we study
how Laplace’s Law cannot account for important characteristics of the eye, such as variations
in globe shape and size or tissue thickness, anisotropy, viscoelasticity, or that the eye is a
living, dynamic organ.

RESULTS. We show that accounting for various geometrical and material factors, excluded from
Laplace’s Law, can alter estimates of corneoscleral wall stress as much as 456% and, therefore,
that Laplace’s Law is unreliable.

CONCLUSIONS. We conclude by illustrating how computational techniques, such as finite
element modeling, can account for the factors mentioned above, and are thus more suitable
tools to provide quantitative characterization of corneoscleral biomechanics.
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The corneoscleral shell is a biomechanically resilient
structure. It can withstand the external physical insults

from blinking, rubbing, and atmospheric and cerebrospinal
pressures.1 It can also resist physiological alterations due to
changes in intraocular pressure (IOP) and ocular pulsations.1

Despite all these mechanical challenges, the corneoscleral
shape and the relative positions of the cornea, the lens and the
retina are preserved so that the visual ability is unaffected.2–5

Several sight-threatening pathologies are believed to be
closely related to the mechanical state of the eye. For instance,
certain forms of glaucoma are postulated to originate from
prolonged mechanical insult to the optic nerve head (ONH)
due to either elevated IOP6 or low cerebrospinal fluid
pressure.7 Keratoconus is characterized by corneal ectasia,
which leads to vision distortion, and is associated with altered
corneal mechanical properties.8 Axial myopia arises from an
elongated corneoscleral shell structure such that the refracted
image is not focused on the retina surface.9,10 Overall,
quantification of ocular biomechanics is paramount in advanc-
ing our understanding of ocular physiology and pathophysiol-
ogy.11 Searching the online literature repository Scopus12 with
the search terms ‘eye and biomechanics’ yields more than
10,000 hits from 1964 to 2013 (Fig. 1). The trend is rapidly
increasing with approximately half (49.2%) of these documents
being published between 2009 and 2013.

A common approach to quantify biomechanics in ophthal-
mology has been to employ Laplace’s Law (or the Law of
Laplace). Among the 97 ophthalmology journals (SCImago
Journal & Country Rank),13 21 contained one or more
manuscripts with the phrase ‘Laplace’s Law’ or ‘Law of Laplace.’
Laplace’s Law is an elegant mathematical approach to estimate,

for thin vessels, wall stress as a function of vessel pressure,
radius of container, and wall thickness. It has been applied in
several areas of physiology, often used in explaining the
biophysics of hollow organs, such as the alveoli14 and the
esophagus.15 It has also been adapted to study the mechanics of
the cardiac chambers.16,17 Whereas proponents of Laplace’s
Law contend that it provides valuable insights to biophysical
phenomena,15,18 several authors have also written about
misuse or misinterpretation in cardiovascular and respiratory
biomechanics.14,19

As with all mathematical descriptions of physical phenom-
ena, the Law of Laplace has several built-in assumptions that
circumscribe the conditions on which it is valid. For instance,
the application of Laplace’s Law is limited to simple idealized
pressure vessel shapes such as hollow spheres and cylinders.
Furthermore, the mechanical properties of the pressure vessels
are not taken into account. Violating these can lead to large
errors in predictions of the mechanical behavior of biological
tissues. Hence, knowledge of these limitations will benefit
clinicians diagnosing ophthalmic pathologies, scientists re-
searching in the area of ocular biomechanics, and biomedical
engineers inventing new ophthalmic devices.

The purpose of this manuscript is to clarify the use of
Laplace’s Law in estimating stresses borne by ocular tissues.
The essential biomechanical terms are first defined in Table 1.
Laplace’s Law is then further explained and its assumptions
detailed. Subsequently, the suitability of Laplace’s Law in
addressing problems in ocular biomechanics is assessed. Finally,
improved formulations and methodologies for predicting ocular
tissue stresses are proposed.
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LAPLACE’S LAW

Pierre-Simon, marquis de Laplace20 (1749–1827) was a French

scientist and politician (Fig. 2). He made significant contribu-

tions in mechanics, calculus, and theory of probability. In

Treaty of Celestial Mechanics (Original title in French: Traité de

Mécanique Céleste),21 Laplace described a mathematical
relationship, Laplace’s Law, originally intended to quantify
the liquid surface tension in a capillary.

To predict wall stress (r), Laplace’s Law can be applied to a
uniform isotropic hollow sphere with thickness t and radius r,
under internal pressure p (Fig. 3).22 It is important to note that
the thin shell assumption is applied in Laplace’s Law, which
postulates that there is no circumferential stress (stress
tangential to the surface of corneoscleral shell) variation
through the wall thickness. A common way to derive such a
formula is to perform a balance of forces between the internal
pressure (p) and the resulting wall stress. By examining the
cross-section of the sphere, the total force due to the internal
pressure is the product of p and the cross-sectional area (pr2)
while the aggregate circumferential tension is the product of r,
t and the cross-sectional circumference (2pr). Equating the two
quantities and rearranging them leads to

r ¼ pr

2t
: ð1Þ

When applied to the corneoscleral shell, Laplace’s law is
intuitive in many ways: Bigger eyes (larger r) and/or thinner
corneoscleral tissue layers (smaller t) will exhibit larger wall
stress. In addition, stress increases proportionally to IOP (larger
p). Laplace’s Law can be derived in other ways, and presented
in various formulations such as using the radius of curvature
instead of the spherical radius.22 In this work we will discuss
Equation 1, as it is the most commonly used formulation in
ophthalmology.

TABLE 1. Essential Biomechanical Terms

Normal stress is the magnitude of force per unit area applied perpendicularly to a material cross-section. Stress can lengthen (tensile stress) or

shorten (compressive stress) a given material. Three perpendicular stress components (radial, circumferential, and meridional) can be defined

at any point of the corneoscleral shell surface. The SI unit of stress is Pascal (Pa).

Normal strain is a measure of material deformation as a result of stress, and can be estimated as the ratio of length change to its initial length

(valid for small strain values). A positive strain implies extension, while a negative strain indicates compression. Similar to stress, three

components of strain (radial, circumferential, and meridional) can be defined at any point of the corneoscleral shell. As strain is a length

ratio, it is dimensionless.

Sliding of the surface of the corneoscleral shell can also results in deformations. Here, the sliding, or shear, force is applied parallel to the tissue

cross-section. The shearing effect is quantified by shear stress and shear strain. The former measures the magnitude of shear force per

unit of applied area in Pascal (Pa), while the later measures the angle of resulting distortion. Shear strain is dimensionless. Similar to their

normal counterparts, shear stress and shear strain can be defined along the three orthogonal directions (radial, circumferential, and

meridional) at any point of the corneoscleral shell.

The aggregate influence of the three normal and three shear stress components on the material can be evaluated by computing the principal

stresses. The largest or first principal stress, and the corresponding angle indicate the maximum stress that the material undergoes and the

resultant direction that it acts on. Similar measures for strain, termed principal strains, are calculated using the three normal and three

shear strain components. The largest or first principal strain, and the respective angle suggest the maximum strain applied on the material

and its direction. The principal stresses act in orthogonal directions, the same applies to the principal strains.

Von Mises stress is a single metric that can conveniently summarize the 3D state of stress. The von Mises stress is evaluated from the three

principal stresses.

The elastic modulus, or Young’s modulus, describes the elastic stiffness of a material. It is the ratio of the applied (normal) stress to its

resultant (normal) strain. By evaluating the ratios of corresponding stress and strain components, the elastic modulus of a material in any

direction can be assessed. The elastic modulus is measured in Pascal (Pa) and its inverse is termed compliance.

Anisotropy is the property by which materials exhibit different stiffness along different orientations. Ocular tissue is anisotropic due to its

underlying collagen organization and preferred orientation. Isotropic materials show identical stiffness when loaded along different

directions

Nonlinear materials exhibit changing stiffness with loading. Posterior scleral collagen fibers are progressively straightened with stretch, which

results in tissue that is initially compliant at low load but increase in stiffness at higher load. Stiffness of nonlinear material, or its tangent

modulus, can be deduced from the gradient of a material’s stress-strain graph. Conversely, linear materials have constant elastic moduli.

Viscoelastic materials exhibit time-dependent stiffness determined by the rate of loading. They also dissipate energy in a loading-unloading

cycle (hysteresis). Conversely, the stiffness of an elastic material is time-independent and energy is conserved (stored) in a loading-unloading

cycle.

The mechanical properties of the corneoscleral shell are heterogeneous. This is contributed by location-dependent corneoscleral envelope

geometry, varying tissue thickness, nonuniform underlying collagen organization, and different local tissue mechanical properties. Local stress

concentrations occur at thin parts of the shell, at the limbus and regions around and in the optic nerve head.

FIGURE 1. Number of documents relating to search terms ‘eye and
biomechanics’ published from 1964 to 2013. Data from SCOPUS.12
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LAPLACE’S LAW IS ONLY VALID FOR THIN, HOLLOW,
AND HOMOGENEOUS SPHERES

In this section, we demonstrate that Laplace’s Law cannot
accurately predict IOP-induced wall stresses within the
corneoscleral shell as the latter contains prominent morpho-
logic irregularities.

Influence of Size and Shape

The shape of the corneoscleral shell refers to its contour and
anatomical profile. The actual morphology of the corneoscleral
shell is complex and irregular.23 In humans, both the shape and
the size of the corneoscleral shell vary widely among
individuals and pathophysiological conditions.23,24 Further-
more, in healthy eyes, the anterior-posterior (AP) and nasal-
temporal (NT) diameters of the corneoscleral shell are
approximately a millimeter longer than the superior-inferior
(SI) diameter,24 indicating that the eye is not a sphere.

How does this difference in lengths affect the computation
of corneoscleral wall stress using Laplace’s Law? Let’s consider
an example corneoscleral shell that is a perfect sphere with a
diameter of 24.6 mm,25–29 a uniform tissue thickness of 0.8
mm,29–31 and exposed to an IOP of 2 kPa (15 mm Hg).
Laplace’s Law (Equation 1) predicts a circumferential stress of
15.4 kPa that is uniform over the entire shell (Fig. 4a). The
situation is quite different once we consider more accurate
ocular dimensions. As a case in point, consider an ellipsoidal
shell with uniform thickness of 0.8 mm, with AP and NT
diameters of 24.6 mm, and an SI diameter of 23.4 mm (as

observed physiologically32). Although different formulations
are available for calculating circumferential stress in nonspher-
ical chamber,33 we use an analytical solution developed by
Regen34 that enables us to calculate the circumferential wall
stress of an ellipsoidal chamber with different diameters. The
circumferential stress on the ellipsoidal shell is observed to be
heterogeneous across the surface (Fig. 4b). In contrast to the
result obtained from Laplace’s Law, the circumferential stress
peaks at the superior and inferior poles of the ellipsoidal
chamber and gradually decreases toward the central transverse
(AP-NT) plane. The maximum circumferential stress is 5.1%
higher than the value given by Equation 1 while the minimum
stress is 5.3% lower. The results indicate that Laplace’s Law can
both overestimate and underestimate shell stresses at different
locations. Note that real corneoscleral shell shapes are more
complex than the spheroid considered here, which can cause
further heterogeneity in stress fields.35,36

Errors from Laplace’s law can increase considerably when
considering pathophysiological conditions. For instance, axial
myopia can lead to 7.5% lengthening of the axial length
compared with emmetropic eyes.10,37 Our analysis suggests
that if the axial length extends from 24.6 to 26.4 mm
(equivalent to a mild myopia case of �5.07 diopters [D]38),
the maximum stress is 12.2% higher than that computed by
Laplace’s law, while the minimum stress would be 11.8%
lower (Fig. 4c). As the various axes of the spheroids are
different, the range of differences in stresses will increase. In
the case of severe axial myopia, the axial diameter can exceed
33.5 mm (approximately�25.01 D),39 the errors can escalate
to 31.3% and 30.7%. The stress distribution also reveals
regions of higher stress concentration compared with the
healthy eye, particularly at the superior and inferior poles.
These localized areas of high stress could potentially be
susceptible to material rupture.

Geometrical discontinuities within the corneoscleral shell
also make the use of Laplace’s Law inappropriate. In humans,
the protrusion of the cornea is characterized by a change in
shell curvature at the limbus, resulting in limbal stress
concentrations. The maximum von Mises stress (Table 1) at
the limbus is estimated to be four times that in the cornea, and
30% higher than that in the sclera.36 Furthermore, distinct
curvatures, thicknesses, porosities, and microstructures be-
tween the peripapillary sclera and the neighboring lamina
cribrosa (LC) grant the postulation of Laplace inadmissible.40,41

A study has shown that the abrupt change in geometrical and
mechanical properties at the scleral canal boundary could lead
to an acute stress concentration in the ONH region of up to 25
times the value of IOP.42 The quantity is 300% higher than that
estimated through Laplace’s Law, yet the latter is still
commonly used to predict ONH stresses.

FIGURE 2. Pierre-Simon Laplace (1749–1827). Posthumous portrait by
Jean-Baptiste Paulin Guérin, 1838. (Source: Wikimedia Commons,
https://commons.wikimedia.org/wiki/File:Pierre-Simon,_marquis_de_
Laplace_(1745–1827)_-_Gu%C3%A9rin.jpg, {{PD-1923}}.)

FIGURE 3. Derivation of Laplace’s Law. The equation is derived by
balancing the forces due to internal pressure (p) and circumferential
stress (r) for a spherical shell of radius (r) and thickness (t).
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Overall, Laplace’s Law, with its assumption of constant
radius, cannot produce the circumferential stress variation due
to unequal axial length and anatomical features.

Influence of Tissue Thickness

The thickness of the corneoscleral shell is location-depen-
dent.29,35,43 The corneal thickness is approximately 520 lm
near the center and increases toward the peripheral region
(~660 lm).44 In the sclera, starting from the limbus and
traversing posteriorly, the average thickness decreases
monotonically until it reaches a minimum near the equator,
where the tissue begins to increase in thickness toward the
posterior pole. At the ONH, the scleral tissue tapers toward
the scleral canal.5,43 The sclera does not have a constant
thickness along both NT and SI directions. Peripapillary
scleral thickness varies, being thinnest at the inferior and
nasal quadrants (~880 lm), and thickest at the superior and

temporal quadrants (~1050 lm).43 The heterogeneity of
corneoscleral tissue thickness can adversely affect the
approximation made from Laplace’s Law. The thinner parts
of the shell can exhibit higher IOP-induced stress than the
thicker parts due to a smaller cross-sectional area. Variations
in corneoscleral shell thickness, ranging from around 100
lm at the thinnest, to over 1000 lm at the thickest, would
imply also an order of magnitude in variations in local
stress.45 This stress heterogeneity cannot be predicted by
Laplace’s Law.

Ophthalmic disorders can also result in considerable
changes in the ratio of corneoscleral shell thickness to eye
globe diameter. For instance, hyperopia is related to both
increased scleral thickness and reduced axial diameter.44,46

The increased thickness-to-diameter proportion can yield
larger stress difference between the inner and outer
surfaces; the thin shell assumption from Laplace is no

FIGURE 4. Circumferential stress color maps of a spherical chamber, a normal eye and a myopic eye (represented as ellipsoidal chambers), as
predicted by the Regen’s formulation.34 The chambers are oriented according to the eyeball on the top left. Each shell has a thickness of 0.8 mm and
an IOP of 2 kPa (15 mm Hg). (a) The spherical shell has a diameter of 24.6 mm, and a uniform circumferential stress of 15.4 kPa. The result is
identical to that of Laplace’s Law. (b) In the case of a normal eye, the SI axis is shorter than the AP and NT axes (23.4 vs. 24.6 mm). The model
suggests that both the superior and inferior poles experience the maximum circumferential stress. (c) In a myopic eye, the SI axis is shorter than the
NT axis, which in turn shorter than the AP axis (23.4 vs. 24.6 vs. 26.4 mm). According to the model, superior/inferior pole experiences the
maximum circumferential stress while the anterior/posterior pole undergoes the minimum stress value. In (b) and (c), the differences between axial
lengths are magnified 34 for illustration purposes.
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longer valid. In fact, the circumferential stress (across the
corneoscleral tissue) is better represented from the thick
shell theory.22 The thick shell theory accounts for the
pressure difference across the wall and recognizes the
variation of circumferential wall stress across the wall
thickness. We assume that the IOP is applied on the inner
surface with zero external pressure. In this case, the
maximum circumferential stress occurs at the inner surface
while the minimum at the outer surface. Considering a
healthy eye globe with an axial diameter of 24.6 mm and a
wall thickness of 0.8 mm (thickness-to-radius ratio of 0.03),
the circumferential wall stress obtained from Laplace’s Law
is 3.3% lower than the maximum stress value and 3.3%
higher than the minimum stress value evaluated from the
thick shell equation.22 In the case of hyperopia with axial
diameter of 17.2 mm44 and wall thickness of 0.8 mm,
(thickness-to-radius ratio of 0.047), the differences from the
inner wall circumferential stress and the outer wall stress
rise to 4.6% and 4.7%, respectively.

Overall, Laplace’s Law, with its assumption of uniform stress
across the wall, can produce unreliable results when it is
applied to compute the circumferential stress of the eye with
varying and thick scleral tissue.35

CORNEOSCLERAL SHELL MECHANICAL PROPERTIES ARE

NOT ACCOUNTED FOR IN LAPLACE’S LAW

In this section, we illustrate that the exclusion of corneoscleral
tissue mechanical properties within Laplace’s law can lead to
vastly inaccurate approximations of wall stress. Unfortunately,
deriving analytical, closed form solutions that can account for
complex tissue mechanical properties remains impossible.
Thus, we will compare predictions of stress made with

Laplace’s Law with those made numerically, namely using
finite element (FE) modeling.

Computational Modeling of Corneoscleral Tissue

Microstructure

Apart from its geometrical features, the corneoscleral shell
varies in mechanical properties by location and by depth. The
stroma is the main load-bearing layer, which is reinforced by
collagen fibrils of different sizes, organizations, alignments, and
preferred orientations. The scleral stroma contains mainly Type
1 collagen, whose diameter and compactness increases with
tissue depth.47 Collagen fibrils in the corneal stroma are thin
and highly organized.48 The collagen fibers form rings
surrounding the limbus that reinforce the region near the
cornea.49 The collagenous microstructure of the corneoscleral
shell contributes to its unique mechanical characteristics
including anisotropy, nonlinearity, viscoelasticity, and inhomo-
geneity.

As for complex shapes, Laplace’s Law cannot account for
complex mechanical properties. To overcome such a limita-
tion, investigators have attempted to couple Laplace’s Law
with stress-strain relationships derived from cadaverous
corneoscleral tissues,50 modify Laplace’s Law to accommodate
varying curvatures,33 or build finite element models incorpo-
rating complex geometrical and material features as those
described in Table 2.

In the following sections, we investigate the influences of
anisotropy, viscoelasticity, heterogeneity, and nonlinearity on
circumferential stress calculations using FE modeling. We also
compare the Laplace’s Law results with FE computations,
where applicable.

TABLE 2. Comparison of Laplace’s Law and Recent FE Models Considerations

Model
Geometrical Considerations Material Considerations

(Physiological Focus) Shape Thickness Anisotropy Nonlinearity Viscoelasticity Inhomogeneity

Laplace’s Law21 � �

Woo et al.56 (CS) � . � . � �

Bellezza et al.81 (ONH) � � � � � �

Asejczyk-Widlicka et al.82 (CS)

Sigal et al.42 (ONH/LC)

Pinsky et al.58 (CS) � � . . � .

Zhang et al.75 (ONH/LC)

Sigal et al.83 (ONH/LC) . . � � � �

Sigal et al.84 (ONH/LC)

Roberts et al.86 (CS/LC) . . . � � �

Girard et al.35 (CS) . . . . � .

Grytz et al.57 (CS/LC)

Coudrillier et al.60 (CS/ONH)

Coudrillier et al.85 (CS)

Asejczky-Widlicka et al.50 (CS) . . � . � �

Norman et al.23 (CS/ONH) � . � � � �

Perez et al.36 (CS) . . � � . �

Region of focus: Corneoscleral shell (CS); lamina cribrosa (LC); optic nerve head (ONH).
Shape: Idealized spherical, ellipsoidal or hybrid shell (�); anatomical shape of mammalian eye (.).
Thickness: Uniform (�); anatomical (.).
Anisotropy: Isotropic (�); anisotropic (.); not applicable ( ).
Nonlinearity: Linear (�); nonlinear (.); not applicable ( ).
Viscoelasticity: Elastic or hyperelastic (�); viscoelastic (.); not applicable ( ).
Inhomogeneity: Homogeneous (�); inhomogeneous (.); not applicable ( ).
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Influence of Anisotropy

The fibrils underlying the corneoscleral tissue can provide
extra stiffness during deformation. As the majority of the
underlying collagen fibers lie within a plane parallel to the shell
surface,51 the corneoscleral layer is stiffer along the tangential
direction, and is thus well adapted to resist IOP-induced stress.
The anterior sclera immediately adjacent to the limbus and the
peripapillary sclera that surrounds the optic disc, both exhibit
high anisotropy with circumferential organizations.49 Such
microstructural organizations are thought to provide reinforce-
ments in order to limit corneal and ONH deformations.52 The
varying fiber arrangements are related to change in circumfer-
ential stress that cannot be explained by Laplace’s Law.45

To understand the consequences of applying Laplace’s Law
to a region with high material anisotropy, we compared the
wall stress obtained from a monkey posterior scleral FE
model35 with that from a spherical vessel of similar size
computed with Laplace’s Law. We focus our comparisons to
the peripapillary sclera, a relatively high anisotropic region.
Note that the stress estimates from the FE model were obtained
based on an anatomically-accurate scleral shell geometry, three-
dimensional (3D) experimental deformation measurements,
and a realistic constitutive model that took into account
collagen fiber anisotropy. Such stresses can be considered
more reliable for the monkey eye than those from Laplace’s
Law.

From the FE model, the 95th percentile stress (first
principal) in the peripapillary sclera at 10 mm Hg was 0.51%
higher than that estimated from Laplace’s Law while the 5th
percentile stress was 73% less (Fig. 5a). The values at 5% and
95% represent the minimum stress and maximum stress in the
FE computation after eliminating the outliners. Differences
worsened when IOP was increased to 30 mm Hg (127% and
�59.7%) and 45 mm Hg (170% and�56.0%). In sum, Laplace’s
Law is incapable of incorporating the direction-dependent
biomechanical features of the corneoscleral shell, and thus
cannot predict the effects of underlying collagen fiber
orientations on wall stress in the peripapillary sclera.

Influence of Viscoelasticity

The corneoscleral shell is viscoelastic, with mechanical
properties that vary with loading rates. Studies showed that
mammalian cornea53 and scleral54 tissues stiffness increases

with tissue loading speed. Corneoscleral tissue viscoelasticity is
also characterized by the energy dissipated during loading-
unloading cycles, defined as hysteresis.53,54 The phenomena of
rate-dependent stiffness and hysteresis are postulated to help
ocular tissues dissipate the deformation energy and protect
them from sudden loading and excessive deformation, such as
in blast trauma, in order to prevent injury.

Perez and colleagues36 developed a viscoelastic FE model of
the corneoscleral shell to simulate the effect of in vitro PBS
injection in expanding ocular volume and elevating IOP. They
demonstrated greater and more rapid IOP increases at faster
injection rates, as a result of tissue viscoelasticity inducing
larger instantaneous tissue stiffness. Volumetric injections of
15 lL at slow (0.1 lLs�1) and intermediate (1.5 lLs�1) rates
could lead to IOP changes (in their model) of 8 and 11 mm Hg,
respectively. In the case of a fast injection (15 lLs�1), an IOP
change of 14 mm Hg was reported, while von Mises stress
ranged from 3.74 kPa (5th percentile) to 18.4 kPa (95th
percentile). In fact, the distribution of von Mises stress
(calculated from the principal stresses) computed from the
viscoelastic FE model contrasts with the stress value produced
by Laplace’s Law, which is evaluated to be 20.8 kPa at IOP of 14
mm Hg (456% and 13.0% higher than the 5th and 95th
percentile stress values predicted from viscoelastic FE models,
respectively). In addition, Laplace’s Law cannot be used to
calculate the change of circumferential wall stress due to a
change in IOP, as the rate of change of IOP can affect the
instantaneous stiffness of the corneoscleral tissue and its
deformation. In sum, Laplace’s Law cannot be used to make
predictions that consider the effect of viscoelasticity.

Influence of Heterogeneity

The mechanical properties of fiber-reinforced corneoscleral
shell are direction-dependent (anisotropy), strain-dependent
(nonlinearity), and rate-dependent (viscoelasticity). As collagen
deposition, alignment direction, and organization varies in
different regions49 and at different tissue depth,51,55 the local
mechanical properties are also location-dependent (heteroge-
neity). Laplace’s law is unable to take such complexities into
account, and caution should be taken when estimating wall
stresses (e.g., in different regions of the scleral shell. In the
latter, strong variations in biomechanical properties exist
among the anterior, equatorial, and posterior regions).54

FIGURE 5. Stress of FE model of monkey35 (a) peripapillary sclera and (b) peripheral sclera and those of Laplace’s Law. Percentage differences
between the FE and Laplace’s Law stress values are indicated. Dimensions of spherical thin shell for Laplace’s Law evaluation: thickness 0.5 mm,
radius 10 mm.
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Influence of Nonlinearity

It has been repeatedly demonstrated that the tissues of the eye
stiffen with stretch,45,54,56 exhibiting a nonlinear relationship
between circumferential stress and IOP. This is because, as
stretch increases with IOP, more and more collagen fibers
uncrimp, or straighten, and become recruited to resist the
increasing load.35,57–59 Laplace’s law does not intrinsically
presuppose a linear relationship between stretch and stress.
Hence, as long as other assumptions are satisfied, (i.e., a
perfect thin spherical shell that is homogeneous and isotropic)
Laplace’s Law would apply equally well when the material is
linear or nonlinear. However, any deviation from these
conditions would cause Laplace’s Law assumptions to be
violated and lead to invalid predictions. Consider, for example,
a spherical shell made of a material that is homogeneous,
isotropic and nonlinear, with small variations in shell thickness.
As IOP increases the stresses on the wall deform the material.
In regions where the shell is thinner, the stresses will be
slightly higher, which leads to a slightly stiffer material
locally.45 In this way, the inhomogeneity in shell thicknesses
has been translated into material inhomogeneity.

To demonstrate the shortcoming of Laplace’s law as a result
of excluding material nonlinearity in its estimation, we
compared the wall stress obtained from the aforementioned
monkey posterior scleral FE model35 with that from a spherical
vessel of similar size computed with Laplace’s Law. We focus
our comparisons to the peripheral sclera (surrounding the
scleral canal and further than 1.7 mm from the canal), because
it is less anisotropic than other regions of the eye.49,60 The
stress data produced from the model deviate from the
calculated stress using Laplace’s Law and the difference
increases with the pressure. The 95th percentile of first
principal stress within the peripheral monkey sclera at 10 mm
Hg is predicted to be 101% higher than the Laplace’s Law wall
stress while the 5th percentile of the stress is 71.5% lower. The
errors escalate to 250% and �66.5% for 30 mm Hg, and 277%
and �63.8% for 45 mm Hg, respectively (Fig. 5b). The
comparison shows that the usage of Laplace’s Law to estimate
the circumferential wall stress can lead to large error as a result
of not accounting for material nonlinearity.

Special Considerations: The Eye Is a Living,
Dynamic System

Finally, Laplace’s Law is not suitable for evaluating corneo-
scleral biomechanics because it assumes the eye globe as a
nonadaptive and passive mechanical chamber. Instead, the eye
continuously adapts (remodels) in response to physiological
needs, external physical factors, aging, and diseased conditions
thought to be intended to maintain a homeostatic state.61,62 In
addition, the observed presence of contractile cells (myofibro-
blasts) within the scleral shell could provide the eye with an
additional mechanism to alter its elasticity (and thus its stress
levels). The adaptive and active behaviors of the scleral shell
(unaccounted for in Laplace’s law) are briefly described below.

Adaptive Scleral Behavior: Remodeling in Myopia
and Glaucoma

In myopia, it has been hypothesized that the scleral fibroblasts,
which govern collagen and proteoglycan production, have a
regulatory role in the scleral thinning process.63 The changed
scleral material composition and increased laminar architec-
ture64 may lead to a higher probability of scleral interlayer
sliding, thus increasing creep65 (faster and larger scleral stretch
under load). In glaucoma or in response to chronic IOP
elevations, studies have reported scleral thinning,66 structural

scleral stiffening,45 and changes in scleral collagen fiber
orientation.67 While Laplace’s law may be able to consider
simplistic remodeling conditions (through changes in shell
thickness and/or eye radius), it is unable to account for
complex remodeling conditions observed in both myopia and
glaucoma.

Active Scleral Behavior: Evidence for Contractile
Activity

Alpha-smooth muscle actin (often expressed in myofibro-
blasts) has been found in some scleral cells.64,68 Such
myofibroblast-like cells may be able to alter the biomechanical
properties of the sclera through contractile activity.69 The
presence of myofibroblasts in tree shrew sclera helped to
curb the eye expansion rate after increasing IOP from 15 to
100 mm Hg, and to returned to its pre-expansion shape
within an hour. Results from other in vitro studies69,70

suggested that scleral fibroblasts could be differentiated into
myofibroblasts through cytokine TGF-b.68,70 Laplace’s law, as
formulated, can only predict passive stress, and would be
unable to take into account active stress as generated by
scleral myofibroblasts.

Merits of Laplace’s Law in Ophthalmology

Despite its limitations, Laplace’s Law is a useful tool in
ophthalmology. Laplace’s Law summarizes the interaction of
physical variables and illustrates intuitive concepts of stress in
corneoscleral tissues. The popular law is a basis for commu-
nications among scientists, engineers and clinicians in diverse
fields of ophthalmology and facilitates the exchange of ideas.
Laplace’s Law is also useful for educating engineering students
and clinicians about the physics of the eye and complex
biomechanical concepts.

We recognize that Laplace’s Law is attractive because it is
simple and easy to use, and that sometimes it will produce
useful estimates. However, in a real eye Laplace’s Law will
never be exact, and therefore those who use it have the
responsibility to demonstrate that the approximation is good
enough for their use.

DISCUSSION

The limitations of Laplace’s Law are reflected in its partial or
nonconsideration of geometrical and material factors in
explaining the biomechanics of the corneoscleral envelope.
Paradoxically, these assumptions facilitate the formulation of a
simple, clear, and compact relation between IOP and wall
stress. While Laplace’s Law offers a gross first approximation of
IOP-induced wall stress, it can produce vastly inaccurate
estimates, and more accurate methods are demanded for better
understanding of the complex physiology and pathophysiology
of the eye.

Finite element modeling of the corneoscleral shell is
promising. Features such as anatomically-accurate shape and
thickness,23 nonlinear mechanical properties,35,71 collagen
microstructural descriptions,35,71,72 and growth and remodel-
ing57 have been considered in these models. However, FE
models have their own limitations as well, and validations of
these models are still needed. Recent usage of x-ray scatter-
ing,60,73 small angle light scattering,49,74–76 and polarized light
microscopy59 to decipher the collagen arrangement will
enhance the accuracy of the models.49 Implementations of
linear,36 and probably nonlinear77,78 viscoelastic models in
simulation can also advance sophistication and quality of
simulation over time. The use of inverse FE methods35,53,60 or
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prefitting techniques79 may help bridge the gap between
experimental data and simulation results and provide advan-
tages for clinical translations.

The main draw of Laplace’s Law is its simplicity. Finite
element models can also be simple and user-friendly, as Sigal80

has developed an applet for simple FE modeling of the ONH.
The work provides an alternative avenue to understanding the
biomechanics of the eye without being limited by technical
knowledge.

Laplace never meant to model the eye, and we should
exercise caution in using the famous law.
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