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Abstract The semi-circular von Mises distribution is
widely used to describe the unimodal planar organization
of fibers in thin soft tissues. However, it cannot accurately
describe the isotropic subpopulation of fibers present in such
tissues, and therefore an improved mathematical descrip-
tion is needed. We present a modified distribution, formed
as a weighted mixture of the semi-circular uniform distri-
bution and the semi-circular von Mises distribution. It is
described by three parameters: β, which weights the con-
tribution from each mixture component; k, the fiber concen-
tration factor; and θp, the preferred fiber orientation. This
distribution was used to fit data obtained by small-angle light
scattering experiments from various thin soft tissues. Initial
use showed that satisfactory fits of fiber distributions could
be obtained (error generally < 1%), but at the cost of non-
physically meaningful values of k and β. To address this
issue, an empirical constraint between the parameters k and β

was introduced, resulting in a constrained 2-parameter fiber
distribution. Compared to the 3-parameter distribution, the
constrained 2-parameter distribution fits experimental data
well (error generally < 2%) and had the advantage of pro-
ducing physically meaningful parameter values. In addition,
the constrained 2-parameter approach was more robust to
experimental noise. The constrained 2-parameter fiber distri-
bution can replace the semi-circular von Mises distribution
to describe unimodal planar organization of fibers in thin soft
tissues. Inclusion of such a function in constitutive models for
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finite element simulations should provide better quantitative
estimates of soft tissue biomechanics under normal and path-
ological conditions.
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1 Introduction

Collagen fibers have a major impact on the biomechanical
properties of most soft tissues (Fung 1993), and computa-
tional models of such tissues should take into account the
characteristics of the fibers and of their distribution. Indeed,
tissue mechanical behavior depends strongly on the direc-
tion along which the fibers are aligned and on their degree of
alignment (anisotropy). Here, we refer to “anisotropy” in the
microstructural sense, i.e. to the degree of fiber alignment,
recognizing that microstructural anisotropy implies mechan-
ical anisotropy. In considering anisotropy, it is convenient to
think of two limiting cases: a material in which all fibers
are perfectly aligned in the plane of interest (transverse isot-
ropy) and one in which the angular distribution of fibers is
uniform in the plane of interest (planar isotropy). We give a
quantitative measure of this behavior below.

Experimental techniques such as small-angle light/X-ray
scattering (SALS/SAXS) (Chien and Chang 1972; McCally
and Farrell 1982; Ferdman and Yannas 1993; Sacks et al.
1997; Bowes et al. 1999; Aghamohammadzadeh et al. 2004;
Hayes et al. 2007; Abahussin et al. 2009; Joyce et al. 2009;
Meek and Boote 2009), diffusion tensor imaging (Pierce et al.
2010) or 3D histology (Roberts et al. 2008) allow direct mea-
surement of fiber distribution characteristics in tissues. How-
ever, these characteristics can depend strongly on position,
so that it is necessary to make measurements at many dif-
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ferent locations. Hence, experiments typically lead to a large
set of numerical data which must be incorporated into any
modeling study of tissue biomechanics.

It is possible to directly use these data in finite element
codes. However, it may be preferred to smooth these data
and/or analyze the fiber characteristics directly, which is
greatly facilitated by the use of a suitable mathematical func-
tion to fit the experimental data. The goal of this article was
to discuss how this mathematical function can be chosen and
optimized. We restrict attention to thin tissue samples, where
the fibers lie predominantly within a (tangent) plane, so that
the problem is two dimensional.

2 Methods

In principle, the approach we describe below can be used with
a variety of experimental data. For this study, it was conve-
nient to consider SALS data, a typical example of which is
shown in Fig. 1. From such data, one obtains quantitative
information on the fiber distribution at each experimental
point: the angle θp,exp at the maximum of the distribution,
referred to as the preferred fiber orientation (i.e. the modal
angle); and the semi-circular variance, varexp, a measure of
the dispersion of the fibers around this angle. The quantity
varexp varies between 0 (transverse isotropy) and 1 (planar
isotropy) and is defined as:

varexp = 1 −
π∫

0

cos
(
2

(
θ − θp,exp

))
fexp (θ) dθ (1)

where fexp (θ) is the experimentally determined fiber distri-
bution function, normalized such that

∫ π

0 fexp (θ) dθ = 1.
Note that we consider fiber orientation angles, θ , including
θp,exp, to lie in the interval [0, π). Further, note that varexp as
defined in (1) equals the 2D version of the dispersion param-
eter defined by Gasser et al. (2006) and derived by Grytz and
Meschke (2010) multiplied by π/2.

The goal was to robustly fit the experimental data using
a function f (θ; p1, . . . , pn) of n parameters pi such that at
each experimental point, a set of parameters pi exists.

2.1 Choice of a modeling function and cost minimization
approach

The function f should be as simple as possible, i.e. have
as few parameters as possible, while still robustly fitting
the data for the entire tissue, and be physically meaningful.
Based on previous work with ideal fiber characteristics, the
π -periodic von Mises distribution was used for its simplic-
ity (Nguyen and Boyce; Gasser et al. 2006; Pandolfi and
Holzapfel 2008; Girard et al. 2009a,b,c; Raghupathy and
Barocas 2009; Cortes et al. 2010; Grytz and Meschke 2010;

Grytz et al. 2010) as it can describe fiber organization with
only two parameters (Fisher 1993)

f
(
θ; k, θp

) = 1

π Io(k)
exp

(
kcos

(
2

(
θ − θp

)))
(2)

where I0 is the modified Bessel function of the first kind of
order zero and k is the so-called fiber concentration factor,
characterizing the spread of the fiber distribution around the
preferred orientation θp.

Initial examination showed the existence of an additional
constant component in the fiber distribution data, correspond-
ing to an isotropic subpopulation of fibers as observed in other
tissues (Ferdman and Yannas 1993; Abahussin et al. 2009).
The function (2) was therefore modified, and after normali-
zation over the interval [0, π) took the form:

f
(
θ;β, k, θp

)= 1 − β

π
+ β

π Io(k)
exp

(
kcos

(
2

(
θ − θp

)))
(3)

where β, a parameter bounded by 0 and 1, weights the pro-
portion of isotropic and anisotropic contributions. For β = 0,
the fibers are isotropically dispersed regardless of the value
of k, while k is a measure of anisotropy, but only with respect
to the von Mises subpopulation of fibers. In general, there-
fore, changes in the values of either β or k will result in
a change in the semi-circular variance computed from the
function f , i.e. a change in the measure of fiber anisotropy.
We denote the semi-circular variance computed from the ana-
lytic expression for f (i.e. with f replacing fexp in equation
(1)) as varmodel.

The fitting of eq. (3) to the experimental data is an opti-
mization problem. The following cost function was defined:

cost
(
β, k, θp

)= 1

n

√√√√ n∑
i=1

(
f
(
θi ;β, k, θp

) − fexp(θi )

( f
(
θi ;β, k, θp

) + fexp (θi ))/2

)2

(4)

where fexp, the experimentally determined fiber distribution,
is assumed to be known at n angles θi . Thus, at each experi-
mental point, fitting the model function f to the experimental
values involves finding the set of parameters (β, k, θp) for
which the cost is minimum, which was solved with the differ-
ential evolution genetic optimization algorithm (Price et al.
2005).

2.2 Experimental methods

For initial tests, we used experimental data obtained from
SALS on rat sclera (Girard et al. 2010). Briefly, one patch
of scleral tissue (overlapping anterior, equatorial and poster-
ior regions) from a normal rat eye was dissected and cleared
in a glycerol solution. The patch was laid flat between two
microscope slides, mounted in a custom holder, and scanned
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Fig. 1 Typical small-angle light scattering data pattern at a single
point (left). The light intensity on a superimposed circle centered with
respect to the diffraction pattern, nominally proportional to collagen
fiber density, gives the experimental fiber probability distribution, which

is shown at right as a function of angle θ . The data on opposite sides
of the circle, i.e. at θ and θ + π , are averaged to give a single value
at each θ in the interval [0, π). θp,exp is the experimentally determined
preferred fiber orientation

at multiple locations (100 µm spacings) with a 5-mW HeNe
laser beam (diameter: 0.5 mm; wavelength: 632.8 nm). The
laser light was scattered by scleral fibers (mainly collagen)
and projected onto a diffuser screen. Snapshots of scattered
light intensity were recorded by a monochrome CCD camera
(1024×768, 16-bit pixels) and analyzed digitally using cus-
tom Matlab functions in order to extract fiber distributions
at each scanned location. A typical scattered light intensity
pattern is shown in Fig. 1, with its corresponding fiber distri-
bution. We have also carried out fitting on SALS data from
other tissues, and on data gathered using nonlinear optical
microscopy (see Sect. 3.4).

2.3 Fitting approaches

Within the above framework, we considered three possible
fitting approaches.

2.3.1 An unconstrained (three-parameter) approach

The simplest approach is simply to fit equation (3) to the data
using the cost function in equation (4), without constraining
any of the parameters (β, k, θp).

2.3.2 A constrained (two-parameter) approach

Unfortunately, preliminary tests showed that the uncon-
strained approach gave poor results, particularly in regions
where there was a high degree of isotropy in the data (large
varexp) and noise was present. Similar problems typically did
not occur at points with small varexp, where there was pro-
portionally larger peaks (i.e. lower signal-to-noise ratio). For
example, Fig. 2 shows experimental data and fitted curves for
one such location. Since the experimentally measured fiber

Fig. 2 Comparison of the experimentally measured fiber distribution
(green) and the fitted distribution (blue). The value of varexp was 0.95,
which corresponds to nearly complete planar isotropy. Accordingly,
a small β was obtained (β = 0.01), but k was unexpectedly high
(k = 5.5)

distribution was almost constant, the fitting procedure set
the exponential part of the model to be almost zero (β very
small). However, to fit the peak, a very large k was needed to
compensate for the small β, even though the peak was almost
non-existent and due mostly to experimental noise. Thus, by
minimizing the cost function for the distribution in equation
(3), the algorithm produced a non-physical outcome due to
only a modest amount of experimental noise. In such regions,
the algorithm produced values of either β or k that were
very large and varied sharply from between adjacent regions.
Large values of k and rapid parameter variations are expected
to be undesirable since they could lead to poor conditioning
in numerical simulations based on extracted parameters.

We also observed non-uniqueness of (β, k) pairs obtained
from fitting. For example, in Fig. 3, both fitted distributions
were obtained from the same experimental data; however,
the blue fitted curve had significantly different (β, k) values
compared to the magenta fitted curve, even though the cost
of the two fits was the same and was small (0.7%). Since a
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Fig. 3 Comparison of the experimentally measured fiber distribution
(green; varexp = 0.92) and the fitted distributions (blue and red). The
blue and red fits have different parameter values (β = 0.2; k = 3.1) and
(β = 0.8; k = 0.5), for reasons described in the text. The inset shows
the entire family of non-unique (β, k) fitting pairs for the experimental
data produced by the unconstrained fitting algorithm

Fig. 4 Values of β and k obtained from fitting an experimental data
set. Each point represents the results of the fitting at a single loca-
tion within the tissue, colored according to the variance in the data at
that point: magenta: varexp > 0.9; red: 0.8 < varexp < 0.9; blue: 0.7
< varexp < 0.8; green: 0.6 < varexp < 0.7; cyan varexp :< 0.6. Note that
regions with larger anisotropy, corresponding to smaller varexp (cyan
and green), lie in a narrower range of (β, k) values. Colored lines rep-
resent the theoretical (β, k) pairs (see equation (9)) for varexp = 0.9
(magenta), varexp = 0.8 (red), varexp = 0.7 (green) and varexp = 0.6
(cyan). The black line represents the constraint shown in eq. (5)

given non-constant modified von Mises distribution can be
described by only one (β, k) pair, the two pairs that were
obtained do not correspond to the same model distribution.
This undesirable non-uniqueness comes from the multiple
ways experimental data can be fit by the genetic optimization
algorithm when the fitting problem is poorly posed, which in
turn arises due to the use of random seeds in the optimization
algorithm. In fact, by running the fitting algorithm multiple
times, we were able to find a whole family of (β, k) couples
fitting the experimental data at a reasonable cost of ≤1%
(Fig. 3, inset).

The above examples show that it would be beneficial if
the fitting approach was further constrained, especially in
the presence of noise. Further, preliminary tests showed that
θp ≈ θp,exp, implying that the algorithm was accurately fit-
ting the preferred fiber orientation. Therefore, we focused
attention on constraining β and k. There are some general
principles that such a constraint must satisfy. Since in most
cases, changes in either β or k result in a change in the semi-
circular variance varmodel (i.e. a change in anisotropy), we
decided to define both parameters as explicit measures of
anisotropy in order to limit any aforementioned incoherent
behavior. Accordingly, we required β = 1 when k = 0 (pla-
nar isotropy or varmodel = 0). Further, when β = 1 (trans-
verse anisotropy or varmodel = 1), we required k to be infinity,
corresponding to a delta function for f (θ;β, k, θp). Finally,
we observed empirically that at locations with large anisot-
ropy (and hence relatively better signal-to-noise ratios), the
range of (β, k) fitting pairs obtained from the genetic optimi-
zation algorithm was narrow (Fig. 4), and it is clear that any
constraint should pass through this empirically determined
range.

Although there are infinitely many constraints between β

and k that satisfy the above principles, we also wanted an
expression that was computationally efficient. After testing
a number of possibilities, we found that the following rela-
tionship gave very satisfactory results

β =
(

I1 (k)

I0 (k)

)n

(5)

where I1 is the modified Bessel function of the first kind of
order one and n is a tissue-dependent parameter. For all fitting
of SALS data on rat sclera, we used n = 2. Using Eq. (5),
Eq. (3) can be rewritten as:

fconstrained
(
θ; k, θp

) = 1

π I0 (k)2

(
I0 (k)2 − I1 (k)2

+ I1 (k)2

π I0 (k)
exp(k cos

(
2

(
θ − θp

)))

(6)

and this function was used in Eq. (4) in place of f .

2.3.3 A direct two-parameter approach

Motivated by the observed relationship between β and k for
a given level of variance in a data set, we developed a third
approach that involved an analytic relationship between β,
k and varexp. The semi-circular variance of a modified von
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Fig. 5 A plot of the experimentally determined variance, varexp, versus

the theoretically expected value, varVM = 1−β
I1(k)
I0(k)

. Here, (β, k) cou-
ples were obtained from the constrained two-parameter model. The line
is the line of identity. See text for full details

Mises distribution characterized by parameters (β, k, θp) is:

varV M = 1 − π∫
0

cos
(
θ − θp

)

×
(

1 − β

π
+ β

π I0 (k)
exp(k cos

(
2

(
θ − θp

)))
dθ

= 1 − β
I1 (k)

I0 (k)
(7)

where I1 is the modified Bessel function of the first kind of
order one. A suitable fitting should lead to a modeled vari-
ance which is comparable to the experimental one. Hence,
we assume that we can set varexp equal to varVM giving:

varexp = 1 − β
I1 (k)

I0 (k)
(8)

Rearrangement gives an expression for β in terms of the
other fitting parameter k and the experimentally determined
varexp:

β = (1 − varexp)
I0 (k)

I1 (k)
(9)

One way to check the validity of the assumption underly-
ing this approach is to plot varexp against varVM as defined
by Eq. (7). Figure 5 shows this comparison, and we can see
that the assumption that varexp = varVM is indeed a good
one.

Equations (5) and (9) are a system of two equations for
β and k, which can be solved

β = (1 − varexp)
2/3 (10)(

I1 (k)

I0 (k)

)2

= β (11)

Thus, a third approach is to calculate β from the experi-
mental value of varexp and then use equation (11) to find k. In
this approach, the fiber orientation θp was forced to be equal
to the experimentally determined angle θp,exp. Note that in
this approach, there is no minimization of a cost function.

3 Results

In order to get a global overview of the quality of the
fit, it is useful to plot maps of the experimental data
(1 − varexp, θp,exp) and of the parameters (β, k, θp) at each
measurement location (Fig. 6). The quantity 1 − varexp was
used because it allows comparison with the model character-
istic k; more specifically 1−varexp, decreases when isotropy
increases, as should k for non-zero β. We also examined maps
of the cost, a local measure of the relative error of the fit.

3.1 The unconstrained (3-parameter) fitting approach

The results obtained with the three-parameter model, i.e. with
(β, k, θp) unconstrained, show that the fitted values of the
fiber orientations, θp, obtained by the model were very close
to the experimental values (Fig. 6); however, the values of β

and k were disappointing as they were found to be randomly
discontinuous across the tissue sample (for reasons discussed
in Sect. 2.3.2), suggesting that they do not represent phys-
ically meaningful values. For example, in the bottom left
corner of the patch, the cost was very low, whereas high val-
ues of k (non-physically meaningful) were obtained in this
isotropic zone. This situation and others not presented here
showed that the cost can be a misleading indicator of fit qual-
ity, and should be used cautiously, in combination with other
criteria such as maps of the values of β and k.

3.2 The constrained (2-parameter) fitting approach

With this approach, the fiber orientations were well fit and
the cost remained reasonably low. The cost was higher in
some regions than for the 3-parameter approach, but this
was not surprising since the fit was more constrained. The
quantities β and k reflected the anisotropic properties of
the tissue very well. It is worth noting that the maps of
β, k and varexp are not expected to be identical but rather
are different ways of measuring anisotropy. The key points
are that the fitting smoothed the experimental noise, and
that the global regions of anisotropy and isotropy were well
modeled.

3.3 The direct (2-parameter) approach

In this approach, the “fitted” preferred (modal) fiber orienta-
tions were of course identical to the experimental ones. The
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Fig. 6 a Map of the
experimentally measured fiber
distribution characteristics over
a square tissue region. The
preferred fiber orientations,
θp,exp, are represented by black
lines and 1 − varexp (a measure
of anisotropy) by the color
scale. b Results of the three
different fitting approaches as
applied to the experimental data
shown in a. The preferred fiber
orientations are represented by
black lines and the values of the
quantity of interest (β, k or cost)
by the color scales. See text for
explanation of the different
fitting approaches

values of β and k appeared to be very close to the values
obtained with the constrained (2-parameter) model, which
is reassuring. However, the slight differences between the
2-parameter model and the direct calculation were enough to
lead to a significant increase in the cost values at some loca-
tions. Figure 7 shows a typical situation occurring at such a
location. Because of noise near the peak of the experimental
data, the experimental characteristics were inaccurately fit.
In particular, a shift in θp,exp was observed, which directly
impacted the fit (and its quality) since θp was simply taken
equal to θp,exp. Because of this effect, the direct approach

was felt to be inferior to the constrained (2-parameter) fitting
approach.

3.4 Other tissue types and imaging approaches

The fitting results presented to this point have all used SALS
data obtained from rat sclera. However, it is of interest to con-
sider fitting data from other tissues and also data gathered by
modalities other than SALS. We therefore fit the fiber distri-
bution data of Timmins et al. (2010), gathered using nonlinear
optical microscopy that visualized collagen and elastin fibers
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Fig. 7 Plot of fiber probability density vs fiber orientation angle at
a single location. Green: experimental data; blue: the results of the
direct approach for fitting the data; red: the results of the constrained
(2-parameter) fitting approach. The experimental quantities varexp and
θp,exp do not smooth the noise at the peak, and hence the direct approach
is influenced by this noise. However, the fit obtained by the constrained
(2-parameter) model smoothes the noise and gives a better global fit to
the experimental data

Fig. 8 Experimental fiber distribution (green) for one location of the
inner medial region of a bovine common artery obtained using non-
linear optical microscopy (Timmins et al. 2010). The curve in red is
the best fit using our constrained (2-parameter) approach with n = 8,
while the curve in blue is the one from the “standard” semi-circular von-
Mises defined in Eq. (2). This graph demonstrates that our constrained
(2-parameter) approach can accurately describe 2D fiber organization
in a tissue where the “standard” semi-circular von-Mises distribution
does not yield a good fit

in the inner medial region of bovine common carotid arter-
ies. We fitted these data with both our constrained (2-param-
eter) approach (using an exponent n = 8 in Eq. (5)) and the
“standard” semi-circular von-Mises distribution, obtaining a
good fit only with the constrained (2-parameter) approach
(Fig. 8).

We have also carried out analyses using other tissues
(cornea, lamina cribrosa, cortical bone, cartilage) from mul-
tiple species, with similar results. However, it is important
to note that the optimal value of the exponent n in the con-
straint Eq. (5) appears to be tissue dependent. For example,

we found that best results were obtained with n = 2 for
rat sclera, n = 1 for bovine sclera and n = 8 with bovine
artery data. The determination of a suitable value for n is
empirical, e.g. based on analysis of data such as shown in
Fig. 4.

4 Discussion and conclusions

We have presented a method for fitting experimental mea-
surements of fiber distribution in tissue samples, necessary
for e.g. finite element modeling of tissue biomechanics. We
chose the two-parameter π -periodic circular von Mises dis-
tribution for the fitting, based on its physical meaning and
simplicity. However, it was necessary to modify this distri-
bution to take into account an isotropic fiber subpopulation
present in the experimental data. Unfortunately, the addi-
tional degree of freedom inherent in this modified distribu-
tion led to problems of uniqueness and non-physical fitting,
which were overcome by adding a constraint to the fitting
process.

The constrained version of the fiber distribution function
(Eq. (6)) was chosen partly based on empirical observations
(Fig. 5). However, it was checked on a number of samples
(e.g. bone, lamina cribrosa, cornea, arteries) and gave the
best results from among the many candidate constraints con-
sidered. Nonetheless, we suggest that it would be prudent
to check the suitability of this constraint prior to use of this
approach in other tissue types. This could be accomplished by
carrying out an unconstrained (3-parameter) fit, and plotting
the parameter maps (Fig. 6) and (β, k) scattering diagrams
(Fig. 4). We suggest that constraints of the form of (equation
5) should be suitable for most situations. Indeed, decreasing
or increasing n will move the constraint curve up or down in
Fig. 4 to pass through the range of (β, k) pairs determined
from the 3-parameter fit. For example, the use of n = 1 with
bovine scleral data, n = 2 for rat sclera data and n = 8
with bovine artery data provided the best performance over-
all. These different optimal values of n could possibly reflect
differences in the fibrous structure of the tissue, a hypothesis
that warrants further investigation.

The direct approach may seem very attractive, since it
provides expressions for the fitting parameters without a min-
imization process, making it quicker than the constrained
(2-parameter) approach (typically about tenfold faster).
However, it must be kept in mind that the fitting process
smoothed noise in the experimental data and gave a bet-
ter overall result. Because the overall computational burden
associated with the fitting was not particularly large, we rec-
ommend the constrained (2-parameter) approach.
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