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PURPOSE. To improve the quality of optical coherence tomog-
raphy (OCT) images of the optic nerve head (ONH).

METHODS. Two algorithms were developed, one to compensate
for light attenuation and the other to enhance contrast in OCT
images. The former was borrowed from developments in ul-
trasound imaging and was proven suitable with either time- or
spectral-domain OCT. The latter was based on direct applica-
tion of pixel intensity exponentiation. The performances of
these two algorithms were tested on spectral-domain OCT
images of four adult ONHs.

RESULTS. Application of the compensation algorithm signifi-
cantly reduced the intralayer contrast (from 0.74 � 0.16 to
0.17 � 0.12; P � 0.001), indicating successful blood vessel
shadow removal. Furthermore, compensation dramatically im-
proved the visibility of deeper ONH tissues, such as the peripap-
illary sclera and lamina cribrosa. Application of the contrast-en-
hancement algorithm significantly increased the interlayer
contrast (from 0.48 � 0.22 to a maximum of 0.89 � 0.05; P �
0.001) and thus allowed a better differentiation of tissue
boundaries. Contrast enhancement was robust only when com-
pensation was considered.

CONCLUSIONS. The proposed algorithms are simple and can
significantly improve the quality of ONH images clinically cap-
tured with OCT. This study has important implications, as it
will help improve our ability to perform automated segmenta-
tion of the ONH; quantify the morphometry and biomechanics
of ONH tissues in vivo; and identify potential risk indicators for
glaucoma. (Invest Ophthalmol Vis Sci. 2011;52:7738–7748)
DOI:10.1167/iovs.10-6925

Glaucoma is the second most common cause of blindness
worldwide1 and leads to vision loss by damaging retinal

ganglion cell axons in and around the optic nerve head
(ONH).2 Although the underlying causes are likely to be mul-
tifactorial,3 ample evidence now suggests that glaucoma is a
biomechanically related disorder and that ONH biomechanics
is an important driving mechanism.4–7 However, quantifying

ONH biomechanics is complex, and so far investigators have
used analytical8–10 or computational models.11–15 Although
such models perform well, they have relied solely on ex vivo
measurements; thus, they have poor predictive capabilities in a
clinical setting and are not appropriate for glaucoma diagnosis,
prognosis, and risk profiling. To achieve clinical utility, in vivo
measurements of the geometry and the mechanical properties
of all tissues within the ONH, as well as the load (i.e., intraoc-
ular pressure, IOP) that acts on them, are required, which can
then be used in patient-specific biomechanical models of the
ONH.

Optical coherence tomography (OCT) has the potential to
be a powerful tool for quantification of the in vivo biomechan-
ics of the ONH. OCT is a noninvasive imaging technology that
is already widely used in the clinical setting. The newest
generation of spectral domain OCT devices can acquire serial
B-scans rapidly (40,000� A-scans/second), yielding 3D vol-
umes of the ONH with an axial resolution of approximately 4
�m for commercial devices, improving to 1 �m for experimen-
tal ultrahigh-resolution devices.16 The depth of light penetra-
tion of commercially available spectral domain OCT scanners is
now sufficient to start visualizing and identifying the structures
of the lamina cribrosa (LC) and the adjacent peripapillary sclera
(PS),17,18 both of which are thought to strongly influence ONH
biomechanics.19–24

However, despite the improved axial resolution and in-
creased depth penetration, there are some limitations to using
OCT to target these deep ONH structures, which may result in
clinical misinterpretation and morphometric (parameteriza-
tion) errors. Although an ability to visualize the full thickness of
the LC has been reported in human subjects,25 a histologic
comparison using a normal monkey ONH failed to clearly
identify the posterior surface of the LC.17 It is our experience
that the ability to distinguish the anterior and posterior bound-
aries of the LC and indeed the PS is highly variable between
subjects. The principal reason for failing to visualize these deep
structures is the shadows cast by blood vessels, in particular
those arising from the central retinal vessel trunk. Further-
more, as incident light travels through the ONH, it attenuates
with depth, such that reflected signals from deep structures
may be too weak to be reliably detected.

To address these problems, we consider herein the OCT
imaging process itself, in which a light wave is transmitted to
the specimen to be imaged, which in turn backscatters (or
reflects back to the source) a fraction of the incident light
toward a detector for manipulation, measurement, and pro-
cessing. OCT is thus categorized as a pulse–echo imaging
technique, along with radar,26 sonar,27 and ultrasound.28 Al-
though the latter three techniques have benefited from sub-
stantial improvements in both hardware (for transmission and
reception) and software (for image enhancement),29–31 medi-
cal OCT applications are still adversely affected by strongly
scattering and attenuating structures (e.g., pigment and blood).
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Since our ultimate goal is to measure morphometric and bio-
mechanical parameters of the ONH, it is crucial to obtain
high-quality images of the ONH. Thus, in this study, we sought
to develop algorithms to improve the quality of OCT images. In
so doing, we hope that these improvements will enhance our
ability to segment these images and to perform more accurate
quantitative morphometry, eventually thus serving as the basis
for novel diagnosis and risk profiling in glaucoma.

Chang et al.32 recently proposed a method of correcting
light attenuation in OCT images through exponential decay
modeling of the A-scan pixel intensity across biological layers,
using images from three different nonocular biosamples ac-
quired with an experimental swept-source OCT device. This
approach is not very suitable for the ONH or the macula, both
of which are composed of many thin sublayers with varying
attenuation. Uniform processing of the signals from these dif-
ferent sublayers can overestimate the local attenuation. Fur-
thermore, the technique of Chang et al. interprets all decreas-
ing intensity with depth as attenuation, while deeper layers
could simply cause less scattering and would benefit from an
appropriate local analysis.

Hughes and Duck33 developed an approach to correcting
sound attenuation for ultrasound imaging that allows the adap-
tive amplification of the pulse–echo signals with depth—a
process called time-gain compensation, or simply compensa-
tion. The technique works only when the local amount of
backscattering can be related to that of the corresponding
attenuation, which is usually the case when other local sources
of degradation of the pulse–echo signals can be neglected.

Considering the analogy between sound and light, The
compensation approach of Hughes and Duck33 could be ap-
plied to OCT to correct light attenuation. To this end, we

defined and introduced an attenuation term in the governing
OCT equations. Then an analogy was made with their compen-
sation technique, and the corresponding compensation equa-
tions were rederived for OCT. Furthermore, we proposed a
series of contrast-enhancement techniques, which have strong
potential to facilitate segmentation through better detection of
ONH tissue boundaries.

MATERIALS AND METHODS

Few studies have introduced an attenuation term in the governing OCT
equations,32 and fewer have tried to compensate for attenuation,34

although it has been suggested.35 The absence of such a term compro-
mises the automated interpretation of the OCT images and prevents
the application of contrast enhancement techniques, which can facil-
itate boundary detection through segmentation. In the first section of
the article, an attenuation term is introduced into the governing OCT
equations, and the pulse–echo compensation approach described by
Hughes and Duck is used, to show that it can be applied to OCT
images. In the second section, a basic square expansion (also referred
to as exponentiation) is applied to the OCT images at different steps in
the compensation process for contrast-enhancement purposes.

Blood Vessel Shadow Removal

OCT Theory. In the standard spectral-domain OCT modeling
approach, the detected photocurrent ID of the interference between
a light beam reflected from a reference mirror (with electric field

ER �
Ei

�2
ei2kzR) and that from a sample of interest (with electric field

ES � �
z0

� Ei

�2
rS� z�ei2kzdz), is described in its continuous form by

�
�

2
�ER � ES� �

�

2
S�k�� A

Ç
Constant Offset

��
z0

��

rS�z�cos�2k�zR � z��dz

Ç
B 	 Cross-correlation

�
C
Ç

Auto-correlation� (1)

where Ei is the electric field from the incoming light source; S is the
light source spectrum; zR is the distance between the mirror and the
beam splitter; z is the sample depth with respect to the beam splitter;
z0 is the anterior boundary of the sample; rS is the sample reflectivity;
k is the wave number; and � is the responsivity of the OCT detector.
It is noted that equation 1 is further manipulated (through an inverse
Fourier transform) to isolate the sample reflectivity rS, the quantity that
forms an OCT A-scan when considered as a function of depth, z.36

However, a limitation of equation 1 is that it assumes the light does not
attenuate while propagating, which is equivalent to assuming that light
propagates through the full depth of the sample, so that full-depth
imaging without any blood vessel shadowing is achievable. To over-
come this limitation, we modified equation 1 by taking into account
light attenuation.

Attenuation. When light penetrates the sample, a relatively small

portion of it is converted into heat through absorption while the rest scatters
in all directions. Depending on the light’s wavelength and the local scattering
properties of the sample, different models can be used to describe the
scattered light.37 Assuming that the same scattering model can be used
for each sublayer and that heat conversion can be neglected, the
quantity scattered locally from the forward-propagating beam can
be considered to be proportional to the local backscattering, which
in turn is a function of the local reflectivity rS. In other words, the
local attenuation is entirely dependent on the local scattering, and

for each sample layer, a constant fraction of the scattered beam is
assumed to be retropropagated in the direction of observation.
Therefore, the local attenuation of the propagating beam aS at
depth z can be assumed to be proportional to the local reflectivity
rS as described by

aS�z� � �rS�z� (2)

where � is a proportionality coefficient. Accordingly, the attenuated
propagating electric field Eia can be expressed as

Eia�z� � Eie


�
z0

z

aS�u�du

	 Eie


��
z0

z

rS�u�du

(3)

which now replaces Ei in ES, giving

ES � �
z0

�

Ei

�2
rS�z�e


��
z0

z

rS�u�du

ei2kzdz. (4)

When equation 4 is introduced into the governing OCT equation 1, the
attenuated cross-correlation term Ba becomes
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Ba � �
z0

�

rS�z�e

2��

z0

z

rS�u�du

cos�2k�zR
z��dz. (5)

By analogy with the cross-correlation term B in equation 1, equation 5
shows that standard spectral-domain OCT postprocessing does not
extract the reflectivity profile rS to form an A-scan, but instead its

attenuated version rS�z�e
� 2��

z0

z

rS�u�du, which is why shadows appear
behind strongly attenuating structures such as blood vessels and pig-
ment. To correct the attenuation and thus remove the shadows from

the OCT images, the decay term e
� 2��

z0

z

rS�u�du
must be removed; this

step is called compensation.
Compensation in Ultrasound. The introduction of an atten-

uation term in the OCT equation 5 which is proportional to the local
reflectivity emphasizes the fact that the OCT imaging process is a type
of progressively attenuated pulse–echo imaging. For such imaging, an
automatic compensation technique has been developed by Hughes
and Duck33 under assumptions that fit the present OCT case extremely
well. In their model, an ultrasound beam is transmitted along a path,
and the pressure pulse (the sound analogy of the electric field for light)
is progressively attenuated by the local scattering due to tissue inho-
mogeneities and degradation. They further assumed that the local
attenuation is proportional to the local backscattering and neglected
the other degradation processes. Under this assumption, they devel-
oped a model for the propagating beam and the resulting measured
ultrasound signal, which allows the design of an automatic compensa-
tion method, as follows

R�z� � � � b�z� � P0e

��

z0

z

b�u�du

Ç
P(z)

� e

��

z0

z

b�u�du

	 �P0b�z� e


2��
z0

z

b�u�du

Ç
decay term

, (6)

where P(z) is the propagating ultrasound pressure pulse with initial
value P0; b(z) is the local backscattering coefficient; � is a coefficient
such that �b(z) is the corresponding local attenuation; � is a piezo-
electric coefficient of conversion; and R(z) is the attenuated signal
amplitude detected by the ultrasound scanner. Under such conditions,
Hughes and Duck showed that the attenuation profile �b(z) can be
separated from the decay term in equation 6 according to

�b�z� �
R�z�

2�
z

�

R�u�du

. (7)

A strength of the Hughes and Ducks approach is the ability to extract
a tissue intrinsic property (the attenuation profile �b(z)) without
requiring estimation of the model’s parameters (� and �). This tech-
nique matches the situation in standard OCT, allowing automatic
compensation equations to be derived, as follows.

Compensation in OCT. Assuming that the attenuated signal
s(z) that forms an OCT A-scan is given as

s�z� � KrS�z�e

2��

z0

z

rS�w�dw (8)

where K is a possible coefficient of conversion remaining from the
OCT postprocessing, then
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so that

s�z�

2�
z

�

s�u�du

� �rS�z� � HD�s�z��. (10)

where HD is an operator that transforms a given signal s(z) into its
compensated (i.e., unattenuated) form. Similar to the situation in
ultrasound imaging, the local attenuation can be estimated from the
above equation, suggesting that it is possible to automatically compen-
sate OCT images without requiring the estimation of model parameters
(� and K). The attenuation coefficient � remains in equation 10, but
the extracted quantity �rS(z) is a nondecaying profile that allows the
display of unshadowed images. The actual reflectivity profile rS(z)
could be estimated through measurement of �, but this is difficult to
achieve experimentally and beyond the scope of the proposed study.
In the following section, the approach devised by Hughes and Duck
will be applied to clinically captured spectral-domain OCT images of
the ONH and its ease of application will be addressed. Note that a
practical implementation of equation 10 is given in the Appendix.

Application. Spectral-domain OCT volumes were acquired from
the right eye of four human subjects (subject 1: male, 36 years old,
optical refraction 
6.75/
2.00 D  100°, axial length 26.99 mm;
subject 2: male, 30 years old, optical refraction 
2.50/
0.25 D 
124°, axial length 24.69 mm; subject 3: female, 33 years old, optical
refraction 
2.25/
0.25 D  160°, axial length 24.98 mm; and
subject 4: female, 30 years old, optical refraction 
1.75 DS; axial
length, 23.73 mm) with a commercially available device (Spectralis;
Heidelberg Engineering, Heidelberg, Germany). Imaging was per-
formed at Moorfields Eye Hospital, London, where regional ethics
committee approval was obtained. All subjects gave informed con-
sent and were treated in accordance with the Declaration of Hel-
sinki. Each scan pattern comprised 97 horizontal B-scans acquired
over a 15°  15° retinal window, with 768 A-scans (of 496 pixels
each) per B-scan. Each B-scan was acquired nine times and was
averaged for speckle noise reduction. It should be emphasized that
the proposed theory is valid for both time-domain and spectral-
domain OCT applications, but was tested only with spectral-domain
OCT, as this technology has been shown to be more reliable,
producing fewer artifacts.38

Intralayer Contrast. To verify that the proposed algorithm
can remove blood vessel shadows from ONH images, we computed
the intralayer contrast for multiple tissues of the ONH region,
namely PS, choroid, retinal pigment epithelium (RPE), outer nuclear
layer (ONL), outer plexiform layer (OPL) and LC, before and after
application of the proposed compensation algorithm. The intralayer
contrast was defined as

Intralayer contrast � 	I1 � I2

I1 � I2
	 (11)

where I1 is the mean image intensity of a region of interest (ROI; 5 
1 pixels) located within an arbitrarily selected shadow-free region of
a given tissue layer, and I2 is that within a neighboring shadowed
region of the same tissue layer. By definition, the intralayer contrast
varies between 0 and 1, with values close to 0 indicating the
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absence of blood vessel shadows, and values closer to 1 indicating
shadowing.

Contrast Enhancement

In digital image processing, image compression (not to be confused
with data compression to reduce digital storage) is commonly per-
formed to reduce the dynamic range of pixel intensities, hence allow-
ing simultaneous observation of strong and weak signals within a given
image. For instance, logarithmic or nth root compression are frequently
applied to raw OCT images for better visualization of all ocular struc-
tures in a clinical setting.39 Conversely, image expansion is commonly
performed to increase the dynamic range of pixel intensities (e.g.,
through exponentiation or I, where I is the pixel intensity and n is the
exponent) for contrast enhancement purposes. This latter transforma-
tion enhances the ability of edge detection and segmentation algo-
rithms to identify boundaries between adjacent tissue layers. This is of
interest in morphometric and biomechanical studies of the ONH.
However, direct application of pixel intensity exponentiation for con-
trast enhancement is not always feasible in regions of strong attenua-
tion (such as at high depth or behind a blood vessel), since the
transformed signal will show more pronounced shadows or complete
loss of signal. Accordingly, we propose that the use of the aforemen-
tioned compensation algorithm, which will restore signal in strongly
attenuated ONH image regions, is a necessary first step in contrast
enhancement. Exponentiation can therefore be applied to OCT images
immediately after compensation (from equation 10) for contrast en-
hancement as

�HD�I�z���n �
In�z�

�2�
z

�

I�u�du�
n (12)

and this transformation will be compared to exponentiation without
compensation or In(z). For the sake of completeness, we will also study
the following transformation (exponentiation then compensation)

HD�In�z�� �
In�z�

2�
z

�

In�u�du

. (13)

For simplicity, we will use n 	 2 for the rest of this report, with the use
of a larger exponent being discussed later. Finally, the proposed algo-
rithms will be applied to B-scans from the aforementioned ONH vol-
umes captured with spectral-domain OCT.

Interlayer Contrast. To verify that the proposed algorithms
can enhance contrast from OCT images, we computed the interlayer
contrast across multiple tissue boundaries of the ONH (i.e., PS/cho-
roid, ONL/OPL, inner nuclear layer [INL]/inner plexiform layer [IPL],
and LC/PT), before and after application of the proposed contrast-
enhancement algorithms. Similarly to the intralayer contrast, the inter-
layer contrast was defined as

TABLE 1. Intralayer Contrast

Baseline Compensation Exponentiation
Compensation �
Exponentiation

Exponentiation �
Compensation

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

Image 1
PS .73 .70 .70 .52 .23 .14 .10 .14 .95 .94 .93 .79 .45 .28 .19 .22 .28 .13 .01 .16
Choroid .76 .55 .40 .51 .01 .10 .03 .02 .96 .84 .68 .81 .02 .36 .05 .04 .01 .24 .17 .05
RPE .86 .93 .94 .95 .30 .38 .46 .34 .99 .99 .99 .99 .56 .60 .64 .66 .38 .11 .36 .20
ONL .69 .90 .57 .88 .12 .04 .11 .05 .93 .99 .85 .99 .25 .04 .29 .02 .45 .32 .37 .34
OPL .83 .86 .43 .77 .11 .17 .09 .20 .98 .98 .74 .93 .23 .30 .20 .35 .04 .60 .35 .52

Image 2
PS .68 .49 .75 .42 .07 .04 .24 .03 .93 .82 .96 .72 .14 .08 .46 .06 .23 .08 .26 .02
Choroid .52 .81 .77 .64 .01 .33 .16 .19 .82 .98 .96 .91 .01 .59 .27 .34 .13 .47 .12 .12
RPE .88 .81 .86 .94 .36 .38 .24 .20 .99 .98 .98 .99 .64 .60 .38 .36 .24 .22 .20 .12
ONL .73 .92 .66 .50 .06 .14 .08 .26 .95 .99 .92 .83 .14 .32 .16 .41 .47 .39 .26 .46
OPL .77 .91 .55 .87 .04 .06 .03 .29 .96 .99 .88 .99 .08 .12 .02 .56 .29 .10 .24 .62

Image 3
PS .55 .52 .67 .52 .07 .08 .11 .16 .85 .81 .92 .76 .16 .15 .23 .19 .04 .05 .06 .11
Choroid .57 .63 .51 .75 .18 .19 .09 .25 .86 .91 .84 .95 .35 .36 .10 .45 .42 .21 .24 .35
RPE .88 .82 .91 .93 .46 .48 .45 .40 .99 .97 .99 .99 .76 .67 .77 .72 .49 .38 .41 .31
ONL .77 .91 .75 .90 .02 .18 .23 .07 .96 .99 .95 .99 .02 .37 .39 .37 .24 .43 .61 .73
OPL .77 .79 .69 .88 .04 .01 .06 .10 .96 .96 .94 .99 .09 .02 .12 .19 .43 .16 .34 .50

Image 4
LC .98 .55 .50 .66 .25 .05 .16 .33 .99 .85 .81 .94 .49 .11 .33 .63 .18 .19 .38 .46

Image 5
LC .96 .92 .95 .71 .29 .30 .06 .13 .99 .99 .99 .95 .55 .56 .11 .30 .77 .25 .45 .09

Image 6
LC .98 .79 .87 .77 .36 .10 .17 .29 .99 .97 .99 .95 .65 .20 .35 .44 .44 .20 .21 .26

Mean .77 .76 .69 .72 .16 .17 .15 .19 .94 .94 .90 .91 .31 .31 .28 .35 .30 .25 .28 .30
Mean � SD .74 � .16 .17 � .12 .92 � .07 .31 � .21 .28 � .17

The intralayer contrast was computed (between shadowed and shadow-free regions) for multiple tissue layers of the ONH and for six different
images (images 1–3 were located away from the optic disc and images 4–6 within) in each of four human subjects. Application of the proposed
compensation algorithm significantly reduced the intralayer contrast (baseline vs. compensation) and thus decreased the visibility of the blood
vessel shadows present in the initial images (see Fig. 1).

Exponentiation significantly increased the intralayer contrast in all cases and thus increased the visibility of blood vessel shadows (see Fig. 2C).
Combining exponentiation with compensation (rightmost two data groups) significantly reduced the intralayer contrast from that obtained from
the baseline image, hence indicating successful shadow removal. However, in both cases, the decrease was not as high as that obtained with the
use of compensation only.

IOVS, September 2011, Vol. 52, No. 10 Quality Improvement of Optical Coherence Tomography Images 7741



Interlayer contrast 	 	I3 
 I4

I3 � I4
	 (14)

where I3 is the mean image intensity of an ROI (5  h pixels, with
h representing the thickness of the considered tissue layer in pixels)
located within an arbitrary shadow-free region of a given tissue
layer, and I4 is that within a shadow-free region of its adjacent tissue
layer. By definition, the interlayer contrast varies between 0 and 1.
A value close to 0 indicates that the boundary of interest is poorly
detectable, whereas that close to 1 indicates a highly detectable
boundary.

Statistics

Results are reported as the mean � SD. Statistical analyses were per-
formed by using unpaired Student’s t-test (MatLab; The MathWorks,
Natick, MA), with P � 0.05 indicating statistical significance.

RESULTS

Blood Vessel Shadow Removal

The intralayer contrast decreased consistently for each eye
and for each layer after application of the compensation
algorithm, indicating successful shadow removal in each

layer (Table 1). On average, the intralayer contrast signifi-
cantly decreased from 0.74 � 0.16 to 0.17 � 0.12 (P �
0.001). Recall that an intralayer contrast close to 0 indicates
complete shadow removal. This is confirmed by inspection
of two images (away from and within the optic disc) before
and after application of the proposed compensation algo-
rithm (Fig. 1). It is clear that the shadows were indeed
removed and that deeper tissue layers, such as the PS and
the LC, were restored and more visible, confirming that
attenuation was successfully corrected. This is also consis-
tent with the flattening of the lateral pixel intensity passing
through both shadowed and shadow-free regions of the PS
after compensation (Figs. 2A, 2B).

Contrast Enhancement

On average, all three contrast enhancement techniques (expo-
nentiation, compensation�exponentiation, and exponentiation�
compensation) significantly increased the interlayer contrast
from 0.48 � 0.22 to 0.72 � 0.28, 0.89 � 0.05, and
0.88 � 0.07, respectively (P � 0.001; Table 2). The results
suggest that the tissue boundaries will become more easily
detectable when using automated segmentation techniques.
We also noted that the combined use of compensation and
exponentiation resulted in higher interlayer contrasts than

FIGURE 1. Two spectral-domain
OCT images (within and away from
the optic disc) are shown before
and after application of the pro-
posed compensation algorithm. Af-
ter compensation, blood vessel
shadows were removed, and struc-
tures at high depth (i.e., the PS and
LC) became more visible. Attenua-
tion was therefore successfully cor-
rected. Zoomed-in views of the
shadowed regions are shown for
each image for better illustration.
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those obtained with exponentiation only (Table 2, Fig. 3). In
some cases, exponentiation failed to improve only the con-
trast at the PS– choroid and the LC–PT boundaries, which is
consistent with the fact that the PS and LC are highly
attenuated tissues and that compensation is a necessary step
for contrast enhancement. On the other hand, the use of
compensation with exponentiation did not provide any im-
provements at the INL–IPL and ONL–OPL tissue boundaries.
Finally, examination of the image pixel intensity versus
depth within the LC further illustrates the advantages of the
combined exponentiation/compensation effects on contrast
enhancement (Fig. 4). We observed considerable improve-
ment when exponentiation was combined with compensa-
tion (either way) as opposed to exponentiation only. Note
that noncompensated signals (baseline and exponentiation)
exhibited an exponential decay in the LC, indicating the
presence of strong attenuation.

Effects of Contrast Enhancement on Blood Vessel
Shadow Removal

We aimed to understand the effects of contrast enhancement
on blood vessel shadow removal (or decreased intralayer con-
trast). On average, only two of the three proposed contrast-
enhancement techniques (exponentiation�compensation,
and compensation�exponentiation) were able to signifi-
cantly decrease the intralayer contrast, from 0.74 � 0.16 to
0.31 � 0.21 and 0.28 � 0.17, respectively (P � 0.001; Table
1). However, these values were still higher than the one obtained
with compensation only (0.17 � 0.12). This finding is illustrated
by Figure 2D which presents lateral pixel intensity through both
the shadowed and shadow-free regions before and after contrast
enhancement with comparison to compensation only. In the
compensation�exponentiation case, the lateral pixel intensity
flattened (suggesting shadow removal) after contrast enhance-
ment but not as strongly as it did with compensation only.

FIGURE 2. (A) Lateral pixel intensity (percentage difference from mean value along line) was recorded along a line in the PS, as indicated by
the arrow superimposed on a baseline B-scan captured with spectral-domain OCT. (B) Baseline versus compensation. In the baseline OCT image,
the lateral pixel intensity exhibits regions of low magnitude, which correspond to the presence of blood vessel shadows. After compensation, the
lateral pixel intensity flattens and becomes more uniform, suggesting successful shadow removal. (C) Baseline versus exponentiation. When
exponentiation (with n 	 2) is applied to the baseline OCT image, it has the adverse effect of generating higher intensity gradients, implying that
blood vessel shadows are more noticeable. (D) Compensation versus compensation�exponentiation. Application of combined compensation and
exponentiation (in either sequence) to the baseline OCT image successfully renders the lateral pixel intensity more uniform (as opposed to that
obtained from the baseline OCT image). For this specific case, exponentiation�compensation performed as well as compensation (via similar
intralayer contrasts), but compensation�exponentiation performed slightly worse (via a slightly higher intralayer contrast).
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Conversely, exponentiation only significantly increased
the intralayer contrast (0.92 � 0.07), resulting in more pro-
nounced blood vessel shadows (Fig. 3, third row). Figure 2C
also illustrates that point where we observed large deflec-
tions in lateral pixel intensity from a shadowed region to a
shadow-free region. This deflection was in fact higher than
the one observed from the initial (or baseline) image.

DISCUSSION

In this study, we have proposed several algorithms to en-
hance OCT images of the ONH by removing blood vessel
shadows, improving tissue visibility at high depth, and en-
hancing image contrast to facilitate detection and segmen-
tation of tissue boundaries. These algorithms can be imple-
mented easily (see the Appendix), and do not require any
prior segmentation, delineation, or identification of the at-
tenuated regions by the user. This study is a preliminary step
toward automated segmentation of the ONH, which will
ultimately lead to quantification of ONH biomechanics in
vivo, with the hope that an improved understanding of the
pathogenesis, diagnosis, and risk-profiling of glaucoma can
be achieved.

To the best of our knowledge, inclusion of an attenuation
term has not been considered and assessed by studies on OCT
theory, and we suggest that it is a necessary step to achieve

automated segmentation of the ONH. The fact that the Hughes
and Duck algorithm,33 originally developed for use with ultra-
sound, can be used for attenuation correction in OCT images
implies that OCT theory will benefit from the developments
that have been achieved in pulse–echo techniques research,
such as the one proposed here.

Compensation provided two major improvements with re-
spect to the baseline OCT images. First, it successfully removed
blood vessel shadows (as demonstrated by the significant de-
crease in intralayer contrast; see Table 1 and Fig. 1), which will
facilitate segmentation through the use of simple automated
algorithms. This achievement has a direct implication for au-
tomated detection of, for instance, retinal pathologies and
glaucoma. Second, compensation increased tissue visibility at
substantial depth, particularly that of the LC and PS. Both are
the main load-bearing tissues of the eye in the region of the
ONH, and it has been suggested that either biomechanical or
morphologic features of these tissues could serve as risk indi-
cators for glaucoma.5,11,40 The robustness of the OCT-based
measurements performed on these tissues should be dramati-
cally improved after application of the proposed compensation
algorithm.

This compensation algorithm can be used with both time-
and spectral-domain OCT, and can be used on
existing images—for example, from longitudinal studies
with OCT to improve measurements on the LC and/or PS. A

TABLE 2. Interlayer Contrast

Baseline Compensation Exponentiation

Compensation
�

Exponentiation

Exponentiation
�

Compensation

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

Image 1
PS/choroid .11 .04 .48 .10 .67 .58 .77 .54 .11 .10 .78 .20 .88 .85 .96 .82 .83 .80 .95 .80
ONL/OPL .75 .61 .63 .58 .75 .62 .62 .59 .96 .88 .89 .87 .96 .90 .88 .88 .96 .91 .88 .89
INL/IPL .57 .62 .63 .70 .60 .61 .60 .65 .85 .89 .90 .94 .87 .89 .88 .91 .88 .89 .89 .92

Image 2
PS/choroid .58 .21 .51 .16 .81 .65 .82 .60 .88 .49 .80 .41 .97 .90 .98 .87 .97 .88 .97 .86
ONL/OPL .82 .70 .69 .79 .82 .70 .71 .75 .98 .94 .93 .97 .98 .94 .94 .96 .98 .94 .94 .96
INL/IPL .51 .61 .56 .53 .50 .58 .58 .54 .81 .89 .85 .83 .81 .88 .86 .86 .82 .88 .90 .88

Image 3
PS/choroid .39 .07 .48 .11 .76 .58 .74 .50 .77 .02 .79 .23 .96 .85 .95 .77 .96 .82 .93 .74
ONL/OPL .72 .73 .75 .68 .71 .76 .75 .64 .95 .94 .96 .93 .94 .96 .96 .90 .94 .96 .96 .90
INL/IPL .65 .50 .67 .62 .63 .43 .61 .60 .91 .78 .92 .90 .90 .71 .89 .89 .91 .73 .90 .91

Image 4
PS/choroid .10 .24 .57 .38 .73 .60 .80 .72 .42 .49 .86 .72 .95 .87 .97 .94 .93 .83 .97 .92
ONL/OPL .73 .67 .73 .62 .72 .68 .61 .64 .95 .93 .95 .91 .94 .94 .88 .92 .95 .94 .89 .93
INL/IPL .57 .61 .52 .64 .57 .59 .48 .57 .87 .88 .79 .90 .86 .87 .75 .86 .87 .88 .77 .88
LC/PT .43 .54 .20 .28 .75 .51 .65 .48 .78 .71 .37 .48 .96 .82 .90 .76 .88 .81 .81 .61

Image 5
PS/choroid .08 .05 .38 .07 .61 .58 .75 .53 .01 .02 .73 .18 .88 .86 .95 .81 .82 .81 .94 .75
ONL/OPL .72 .76 .71 .69 .72 .76 .70 .69 .94 .96 .95 .93 .94 .96 .94 .94 .95 .96 .93 .95
INL/IPL .57 .60 .59 .63 .55 .59 .58 .61 .86 .88 .86 .90 .85 .88 .85 .88 .86 .89 .86 .90
LC/PT .53 .06 .11 .13 .78 .50 .69 .64 .84 .14 .19 .29 .97 .78 .92 .90 .92 .71 .89 .81

Image 6
PS/choroid .22 .23 .34 .21 .71 .67 .67 .59 .65 .58 .53 .52 .94 .92 .90 .87 .93 .92 .87 .87
ONL/OPL .68 .64 .70 .74 .67 .64 .67 .70 .92 .91 .94 .96 .92 .91 .92 .94 .92 .91 .91 .95
INL/IPL .49 .64 .57 .52 .49 .60 .60 .53 .79 .91 .84 .78 .79 .88 .86 .79 .80 .88 .89 .81
LC/PT .17 .43 .44 .43 .60 .48 .58 .76 .07 .75 .67 .75 .88 .82 .85 .95 .79 .82 .75 .94

Mean .49 .45 .53 .45 .67 .60 .66 .61 .72 .67 .78 .69 .91 .87 .90 .87 .89 .86 .89 .86
Mean � SD .48 � .22 .63 � .09 .72 � .28 .89 � .05 .88 � .07

The interlayer contrast was computed across different tissue boundaries of the ONH (i.e. PS-choroid, ONL-OPL, INL-IPL, and LC-PT for six
different images (images 1–3 are located away from the optic disc and images 4–6 within) in each of four human subjects. On average, all
techniques significantly increased the interlayer contrast from that computed from the baseline images. Combined compensation and exponen-
tiation (rightmost two data groups) produced the largest increases, especially at the LC-PT and PS-choroid boundaries.
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FIGURE 3
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recent study has already looked into laminar changes with
an acute change in IOP.18 Future such studies will likely
benefit from this work.

In the second section of our work, we enhanced the con-
trast of the OCT images. This approach, when combined with
compensation, considerably increased the intralayer contrast
(Fig. 3, Table 2), producing more easily detectable tissue

boundaries (Fig. 4). However if enhancement was directly
applied to the raw OCT images without compensation, shad-
ows became more apparent (when compared to baseline im-
ages), and deeper tissues (such as the LC and PS) were less
visible. In short, compensation appears to be a necessary first
step for contrast enhancement of OCT images. When com-
pared to compensated images, compensated and contrast-en-
hanced images exhibited slightly higher intralayer contrasts,
indicating more visible blood vessel shadows. Nevertheless,
this intralayer contrast was still significantly lower than that
obtained from the baseline images. This reveals a tradeoff
between complete blood vessel shadow removal and contrast
enhancement. Finally, we mention that the interlayer contrast
further increases for an exponent n � 2 (data not shown), and
it may be tempting to pursue this approach. However, the use
of a higher exponent usually generated more speckle noise in
the images, which could eventually compromise the applica-
tion of edge-detection and segmentation algorithms. Further
work is needed to evaluate this impact once segmentation
algorithms are combined with the image processing algorithms
proposed in this study.

Several limitations of this work should be pointed out.
While detection of the anterior boundaries of the LC and PS
should be considerably facilitated by the proposed algo-
rithms, detection of the posterior boundaries of these tis-
sues still may not be straightforward. An approach, called
enhanced depth imaging, allows users to scan the deeper
tissues of the ONH.41– 43 This is achieved either by altering
the distance between the OCT device and the patient’s eye
or the distance between the reference mirror and the beam
splitter. With this technique, an inverted image of the tis-
sues is created, with increased signal at higher depth. En-
hanced depth imaging has recently been incorporated into
the image acquisition software for the Spectralis device
(Heidelberg Engineering), but was not available at the time
of image acquisition for this study. We hope that the algo-
rithms proposed in this study can be combined with en-
hanced depth imaging OCT to provide more accurate pos-
terior boundary detection and thus thickness measurements
of deeper target tissues.

Another shortcoming of this study is that, when we intro-
duced attenuation into the governing OCT equations, we as-
sumed that attenuation was linearly proportional to reflectivity
through the coefficient �. However, � could be nonconstant,
and knowledge of its spatial distribution in each individual
tissue layer of the ONH could improve the accuracy of the
compensation. Unfortunately, this will be difficult to achieve in
practice and implies a priori knowledge of the tissue boundar-
ies, which is precisely one of the goals of preprocessing to
facilitate segmentation. This field remains unexplored in OCT
research.

Furthermore, for direct application of compensation to
OCT images, the approach of Hughes and Duck must be
discretized (as described in the Appendix). While taking this
step, the denominator sum in equations A3, A4, and A5 will
eventually become small at high depth, giving abnormally
high pixel intensities and higher noise at high depth (see

Š

FIGURE 3. The interlayer contrast (a measure of intensity jump between tissue layers) was computed away from (left column) and within (right column)
the optic disc for the following cases: baseline, compensation, exponentiation, compensation1exponentiation, exponentiation1compensation. The
value of the interlayer contrast (a measure of intensity jump between tissue layers) was computed away from (left column) and within (right
column) the optic disc for the following cases: baseline, compensation, exponentiation, compensation�exponentiation, exponentiation�compensation.
The value of the intralayer contrast (subject 1; mean � SD taking into account all tissue layers, as summarized in Table 2) is indicated at the bottom
left of each image. It was noted that compensation, when combined with exponentiation, provided the best interlayer contrasts (bottom two
rows). Exponentiation (third row) did increase the interlayer contrast; however, blood vessel shadows became more pronounced (as demonstrated
in Fig. 2C) and tissue visibility at high depth was reduced. This result suggests that compensation is an essential step for successful contrast
enhancement of OCT images.

FIGURE 4. (A) Axial pixel intensity (percentage difference from the mean
value along a line) was recorded as a function of depth in the PT and LC as
indicated by the arrow superimposed on a baseline B-scan taken within the
optic disc. (B) Axial pixel intensity for different OCT images (baseline, com-
pensation, exponentiation, compensation�compensation, exponentiation�
compensation). All transformations (compared with the baseline) improved
the percentage difference in axial pixel intensity at the PT–LC interface. In the
LC, the baseline and exponentiation signals exhibited attenuation (exponen-
tial decay of the axial pixel intensity) as opposed to the three other signals.
Although the exponentiation signal exhibited a large jump in intensity be-
tween the PT and LC regions, the signal quickly attenuated with depth.
Overall, combining compensation and exponentiation provided the most
satisfying results with no attenuation and higher interlayer contrasts (Table 2).
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Figs. 1, 3). This was not a major issue for the purpose of
this study, as most tissues of interest can be centered within
a certain field of view. Nevertheless, to overcome the prob-
lem, future work could consider a correction factor at high
depth to be introduced in the discretized equations
(A3–A5).

In conclusion, to enhance OCT images, we have proposed
a series of algorithms that can be applied to both time- and
spectral-domain OCT images. These algorithms provided sig-
nificant improvements with respect to baseline OCT images by
eliminating blood vessel shadows, increasing the visibility of
deeper tissues such as the LC and PS, and enhancing contrast
for future use with segmentation algorithms to better detect
tissue boundaries and thus provide better thickness measure-
ments. This study can be developed further by improving the
proposed theory through knowledge of scattering properties
of the ocular tissues and by adapting recent progress in ultra-
sound imaging to OCT. Since morphologic and biomechanical
features of the ONH are potential risk indicators for glaucoma,
this study provides a framework toward collection of such data
in a robust manner.
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APPENDIX

Discretization of the Proposed Algorithms

The proposed algorithms are summarized by equation 10 for
compensation and equations 12 and 13 for contrast enhance-
ment. They need to be discretized for direct application to a
given set of images (or B-scans) captured with either time- or
spectral-domain OCT. In the following, we assume that a B-
scan can be simply defined as I(i, j), where I is the pixel
intensity value for a pixel located in the ith row and jth
column, with i � [1; p] and j � [1; q], and where p  q
represents the total number of pixels. Here, we follow the
matrix convention, meaning that both i and j indexes start
from 1 at the top left corner of the image. It is important to
emphasize that the B-scans must be obtained in raw format. For
example, the Heidelberg Spectralis commonly applies the fol-
lowing transformation (referred as compression in this article)
to better visualize all structures within a given image.

Icompr�i, j� � 255�4 I�i, j�. (A1)

If this is the case, images must be transformed back to their
initial raw format as

I�i, j� � 
 Icompr�i, j�

255 � 4

. (A2)

To compensate an image, one must apply the aforemen-
tioned operator HD to each A-scan for a given image or B-scan
I. Since an A-scan is defined for a given index j, as I(i, j � [1;
q]), the newly compensated image J can be computed as

J�i, j� � HD�I�i, j�� �
I�i, j�

2 �
k 	 i

p

I�k, j��z

(A3)

where �z 	 1, if we work in the image (not physical) coordi-
nate system. Accordingly, since our contrast enhancement
algorithms simply exponentiate the pixel intensity, either be-
fore or after compensation, we obtain the contrast-enhanced
images K and L as

K�i, j� � �HD�I�i, j���n �
In�i, j�


2 �
k 	 i

p

I�k, j��n (A4)

and

L�i, j� � HD�In�i, j�� �
In�i, j�

2 �
k 	 i

p

In�k, j�

. (A5)

Note that all these operations require the discretization of an
infinite integral from equation 10. Since a given OCT image
is not infinite depthwise, the proposed algorithms will de-
generate at substantial depth, as addressed in the Discussion
section.

Although the above equations can be implemented by the
user in any programming language (e.g., C/C��, Fortran),
we propose a simple implementation in the software (Mat-
Lab; The MathWorks), using the following command for
equations A3, A4, and A5, respectively, as

J 	 I./ (flipud (cumtrapz(flipud(I))));

(A6)

K 	 (I./ (flipud (cumtrapz

(flipud(I))))).^n; (A7)

L 	 (I.^n)./ (flipud(cumtrapz

(flipud(I.^n)))); (A8)

where I is a p  q matrix representing a given B-scan, and J,

K, and L are the enhanced images. At this stage, it is inter-
esting to compress the images with equation A3 or other
logarithmic transformation for visualization purposes only.
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